CCP modules of known structure ${ }^{\text {a }}(\mathbf{2 3} / \mathbf{1 0} / \mathbf{2 0 0 9})$

CCP-containing protein	SwissProt Accession no.	PDB code(s)	Modules solved
Complement receptor 1 (CD35)	P17927	$\begin{aligned} & 1 \mathrm{GKN}^{\mathrm{NMR}} 15,16 ; 1 \mathrm{GKG}^{\mathrm{NMR}} 16,17 \\ & 1 \mathrm{PPQ}^{\mathrm{NMR}} 16 \end{aligned}$	$\begin{aligned} & 15,16,17 \text { (of } \\ & 30) \end{aligned}$
Complement receptor 2 (CD21)	P20023	$1 \mathrm{GHQ}^{\mathrm{XR}} 1,2^{\mathrm{b}} ; 1 \mathrm{LY} 2^{\mathrm{XR}} 1,2$	1,2 (of 15 or 16)
Decay accelerating factor (CD55)	P78361	$\begin{aligned} & 1 \mathrm{H} 03^{\mathrm{XR}} 3,4 ; 1 \mathrm{H}_{1} 4^{\mathrm{XR}} 3,4 ; 1 \mathrm{H}_{2} \mathrm{P}^{\mathrm{XR}} 3,4 ; \\ & 1 \mathrm{H} 2 \mathrm{Q}^{\mathrm{xR}} 3,4 ; 1 \mathrm{UOT}^{\mathrm{XR}} 3,4 ; 1 \mathrm{OJV}^{\mathrm{XR}} 1-4 ; \\ & 1 \mathrm{OJW}^{\mathrm{XR}} 1-4 ; 1 \mathrm{OJ}^{\mathrm{xR}} 1-4 ; 1 \mathrm{OK}_{1} 1^{\mathrm{XR}} 1-4 ; \\ & 1 \mathrm{OK}^{\mathrm{XR}} 1-4 ; 1 \mathrm{OK} 3^{\mathrm{xR}} 1-4 ; 1 \mathrm{OK}^{\mathrm{XR}} 1-4 ; \\ & 1 \mathrm{NWV}^{\mathrm{NMR}} 2,3 \end{aligned}$	1, 2, 3, 4 (of 4)
Membrane cofactor protein (CD46)	P15529	$1 \mathrm{CKL}^{\mathrm{XR}} 1,2 ; 2 \mathrm{O} 39^{\mathrm{XR}} 1,2^{\text {c }}$	1, 2 (of 4)
Factor H	P08603	$\begin{aligned} & 2 \mathrm{RLP}^{\mathrm{NMR}} 1,2 ; 2 \mathrm{RLQ}^{\mathrm{NMR}} 2,3 ; 2 \mathrm{WII}^{\mathrm{XR}} 1-4^{\mathrm{r}} ; \\ & 2 \mathrm{~W}^{\mathrm{xR}} 6,7^{\mathrm{s}} ; 2 \mathrm{~W}^{\mathrm{XR}} 6,7^{\mathrm{s}} ; 2 \mathrm{UWN}^{\mathrm{XR}} 6- \\ & 8\left(\mathrm{H}^{\mathrm{X}} 42^{\mathrm{p}} ; 2 \mathrm{~V}^{\mathrm{XR}} 6-8(\mathrm{H} 402)^{\mathrm{p}} ;\right. \\ & 2 \mathrm{JGW}^{\mathrm{NMR}} 7(\mathrm{H} 402) ; 2 \mathrm{JGX}^{\mathrm{NMR}} 7(\mathrm{Y} 402) ; \\ & 2 \mathrm{KMS}^{\mathrm{NMR}} 12,13 ; 1 \mathrm{HFH}^{\mathrm{NMR}} 15,16 ; \\ & 1 \mathrm{HFI}^{\mathrm{NMR}} 15 ; 1 \mathrm{HCC}^{\mathrm{NMR}} 16 ; \\ & 2 \mathrm{BZM}^{\mathrm{NMR}} 19,20 ; 2 \mathrm{GI}^{\mathrm{XR}} 19,20 \end{aligned}$	$\begin{aligned} & 1,2,3,4,5^{\mathrm{d}}, 6, \\ & 7,8,12,13,15, \\ & 16,19,20 \text { (of } \\ & 20) \end{aligned}$
C4b-binding protein α-chain	P04003	$2 \mathrm{~A} 55^{\mathrm{NMR}} 1,2$	1,2(of 8)
Vaccinia virus complement control protein (VCP)	P10998	$\begin{aligned} & 1{\mathrm{G} 40^{\mathrm{XR}} 1-4 ; 1 \mathrm{G}_{4} 4^{\mathrm{XR}} 1-4 ; 1 \mathrm{VVC}^{\mathrm{NMR}} 3,4 ;}_{1 \mathrm{VVD}^{\mathrm{NMR}} 3,4 ; 1 \mathrm{VVE}^{\mathrm{NMR}} 3,4 ;}^{1 \mathrm{E} 5 \mathrm{G}^{\mathrm{NMR}} 2,3 ; 1 \mathrm{RID}^{\mathrm{XR}} 1-4^{\mathrm{e}} ; 1 \mathrm{Y}_{2}^{\mathrm{XR}} 1-4^{\mathrm{f}}} \end{aligned}$	1, 2, 3, 4 (of 4)
Factor B	P00751	$2 \mathrm{OK} 5^{\mathrm{XR}} 1-3^{\mathrm{g}}, 3 \mathrm{HRZ}^{\mathrm{XR}} 1-3^{\mathrm{t}}, 3 \mathrm{HS} 0^{\mathrm{XR}} 1-3^{\mathrm{t}}$	1,2, 3 (of 3)
C2	P06681	$3 \mathrm{ERB}^{\mathrm{XR}} 1-3$	1, 2, 3 (of 3)
C1r	P00736	$\begin{aligned} & 1 \mathrm{GPZ}^{\mathrm{XR}} 1,2^{\mathrm{h}} ; 2 \mathrm{QY} 0^{\mathrm{XR}} 1,2^{\mathrm{h}} ; 1 \mathrm{MD} 7^{\mathrm{XR}} 2^{\mathrm{h}} ; \\ & 1 \mathrm{MD} 8^{\mathrm{xR}} 2^{\mathrm{h}} \end{aligned}$	1,2(of 2)
C1s	P09871	$1 \mathrm{ELV}^{\mathrm{XR}} 2^{\mathrm{h}}$	2 (of 2)
MASP-1	P48740	$3 \mathrm{GOV}^{\mathrm{xR}} 1,2^{\mathrm{h}}$	1,2(of 2)
MASP-2	O00187	$1 \mathrm{Q} 3 \mathrm{X}^{\mathrm{XR}} 2^{\mathrm{h}} ; 1 \mathrm{ZJK}^{\mathrm{XR}} 1,2^{\mathrm{h}}$	1, 2 (of 2)
Apolipoprotein H ($32-\mathrm{GPI}$)	P02749	$\begin{aligned} & 1 \mathrm{C}_{1 \mathrm{Z}^{\mathrm{XR}} 1-5 ; 1 \mathrm{QUB}^{\mathrm{XR}} 1-5 ; 1 \mathrm{G} \mathrm{~F}^{\mathrm{NMR}} 5 ;}^{1 \mathrm{G}^{\mathrm{NMR}} 5} \end{aligned}$	$\begin{aligned} & 1,2,3,4,5(\mathrm{of} \\ & 5)^{\mathrm{i}} \end{aligned}$
GABA-B receptor $1 \alpha^{j}$	Q9Z0U4	$1 \mathrm{SS}^{\mathrm{NMR}} 2$ (cis X-Pro form); $1 \mathrm{SRZ}^{\mathrm{NMR}} 2$ (trans X-Pro form)	$2(\text { of } 2)^{\text {k }}$
Corticotrophin releasing factor receptor $2 \beta^{1}$	Q60748	$1 \mathrm{U} 34^{\mathrm{NMR}} 1 ; 2 \mathrm{JNC}^{\text {NMR }} 1^{\mathrm{m}} ; 2 \mathrm{JND}^{\text {NMR }} 1^{\mathrm{m}}$	$1(\text { of } 1)^{\text {n }}$
Interleukin-2 receptor α-chain ${ }^{\circ}$	P01589	$1 \mathrm{Z} 92^{\mathrm{XR}} 1,2 ; 2 \mathrm{~B} 5 \mathrm{I}^{\mathrm{XR}} 1,2 ; 2 \mathrm{ERJ}^{\mathrm{XR}} 1,2$	1,2(of 2)
Interleukin-15 receptor α-chain	Q13261	$\begin{aligned} & 2 \mathrm{ERS}^{\mathrm{NMR}} 1 ; 2 \mathrm{PSM}^{\mathrm{XR}} 1^{\mathrm{q}, 1} ; 2 \mathrm{Z}_{3} \mathrm{R}^{\mathrm{XR}} 1^{\mathrm{q}} ; \\ & 2 \mathrm{Z} 3 \mathrm{Q}^{\mathrm{XR}} 1^{\mathrm{q}} \end{aligned}$	1 (of 1)

CCP-containing protein	SwissProt Accession no.	PDB code(s)	Modules solved
Seizure 6-like protein isoform 3	Q9BYH1	$2 \mathrm{YRA}^{\mathrm{NMR}_{3}}$	3 (of 5)
CUB and sushi domain-containing protein 1 (CSMD1)	Q96PZ7	$2 \mathrm{EHF}^{\mathrm{NMR}} 3$	3 (of 28)
Complement receptor 1- related/gene protein y (CRRY)	Q 63135	$2 \mathrm{VYB}^{\mathrm{XR}} 1-4^{\mathrm{u}}$	$1,2,3,4$ (of 6 or 7)

[^0]
[^0]: ${ }^{\text {a }}$ Derived from the PDB (http://www.rcsb.org/pdb) IDs are followed by a coded footnote (see below) and the relevant module numbers. Citations may be found at the PDB. NMR: structure solved in solution using NMR; XR: structure solved by X-ray diffraction.
 ${ }^{\mathrm{b}}$ Solved in complex with C3d.
 ${ }^{\text {c }}$ Solved in complex with adenovirus type 11 knob.
 ${ }^{\text {d }}$ Coordinates available at http://www.bionmr.chem.ed.ac.uk/bionmr/public_html/ccp-db.html
 ${ }^{\mathrm{e}}$ Solved in complex with heparin-derived octasaccharide.
 ${ }^{\mathrm{f}}$ Solved in complex with suramin.
 ${ }^{\mathrm{g}}$ This is the structure of intact factor B.
 ${ }^{\mathrm{h}}$ This structure also contains a protease domain.
 ${ }^{i}$ The fifth, C-terminal domain of $\beta 2$-GPI is CCP-like.
 ${ }^{j}$ The rat sequence was expressed for this structural work.
 ${ }^{\mathrm{k}}$ The first CCP is reported to be disordered.
 ${ }^{1}$ The mouse sequence was expressed for this structural work.
 ${ }^{m}$ Solved in complex with astressin.
 ${ }^{\mathrm{n}}$ This domain is CCP-like.
 ${ }^{0}$ This is the structure of IL-2-receptor α-chain extracellular region complexed to IL-2 - the CCP-like domains are strand swapped.
 ${ }^{\mathrm{P}}$ Solved in complex with sucrose octasulfate.
 ${ }^{\mathrm{q}}$ Structure of IL-15-receptor α-chain complexed to IL-15.
 ${ }^{\mathrm{r}}$ Solved in complex with intact C3b.
 ${ }^{5}$ Solved in complex with Neisseria meningitidis factor H binding protein.
 ${ }^{\mathrm{t}}$ Solved in complex with cobra venom factor (CVF).
 ${ }^{\mathrm{u}}$ The CRRY protein sequence is from rat (on hold in PDB).

