CCP-containing protein	PDB code(s)	Module 1	Module 2	Bimodule	Buried
C4BP α	$2 \mathrm{~A} 55^{*}{ }_{1,2}$	4340.74	4365.78	8194.07	512.45
factor H	$1 \mathrm{HFH}^{*}{ }_{15,16}$	4161.13	3843.43	7431.17	573.39
	$2 \mathrm{BZM}^{\text {+ }}{ }_{19,20}$	3920.47	4388.50	7576.76	732.21
DAF	$1 \mathrm{H}^{\text {(}}{ }_{3,4}$	4072.09	4303.13	7864.32	510.90
	$1 \mathrm{NWV}^{*, 3}$	4684.01	4044.11	8275.20	452.92
	$1 \mathrm{OK} 3^{\wedge}{ }_{1,2}$	4314.42	4306.75	8141.22	479.95
	$1 \mathrm{OK} 3^{\wedge}{ }_{2,3}$	4403.66	3992.75	7793.96	602.45
	$1 \mathrm{OK} 3^{\wedge}{ }_{3,4}$	4033.63	4350.62	7848.45	535.80
MCP	$\mathrm{CKKL}^{1,2}$	4576.91	4220.77	8340.89	456.79
CR1	$1 \mathrm{GKN}^{*}{ }_{15,16}$	4489.55	3976.54	7971.51	494.58
	$1 \mathrm{GKG}^{*}{ }_{16,17}$	4068.81	4809.27	8380.24	497.84
CR2	1LY2 ${ }_{1,2}$	4700.86	4180.76	7897.61	984.01
VCP	$1 \mathrm{G40}{ }_{1,2}$	5341.84	4201.85	8653.74	889.95
	$1 \mathrm{G} 40{ }^{\wedge}{ }_{2,3}$	4103.66	3979.33	7492.39	590.60
	$1 \mathrm{G40}{ }_{3,4}$	3988.90	4083.96	7261.93	810.93
	$1 \mathrm{VVC}_{3,4}$	3686.33	3785.37	7080.40	391.30
	$1 \mathrm{E}^{\text {G }}{ }^{*}{ }_{2,3}$	3961.39	3454.97	7146.18	270.18
C1r	$\mathrm{IGPZ}_{1,2}^{\wedge}$	4672.76	4759.40	8954.35	477.81
$\beta 2$-GPI	$\mathrm{IQUB}^{1,2}$	4173.13	3942.93	7619.73	496.33
	$\mathrm{LQUB}^{\text {2,3 }}$	3928.82	4134.70	7700.87	362.65
	$1 \mathrm{QUB}^{\text {(,4 }}$	4186.09	3874.36	7491.51	568.94
MASP-2	$1 \mathrm{ZJK}_{1,2}^{\wedge}$	4178.72	4244.20	7987.84	435.08

Calculated buried surface area among CCP bimodules. All units are in \AA^{2}. Experimentally determined structure pairs up to $17^{\text {th }}$ April 2006 included.

Notes:

- The web server "GETAREA 1.1 " was used for surface area calculations: http://pauli.utmb.edu/cgi-bin/get_a_form.tcl in all cases.
- The surface area (SA) that was buried, was calculated as:
(SA Module ${ }^{\mathrm{i}}+$ SA Module $^{\mathrm{j}}$) - SA Bimodule ${ }^{\mathrm{ij}}$
- All units in \AA^{2}
- To obtain the Interaction Surface Area per module, divide the Buried Surface Area by 2.
- Linker length was defined as the number of residues between the C-terminal CYS of the preceding CCP module and the N-terminal CYS of the following CCP module.
- For Module 1 (in 4 residue linker protein), boundaries were considered from one residue before the first CYS till two residues after the last CYS.
- For Module 2 (in 4 residue linker protein), boundaries were considered from two residues before the first CYS till one residue after the last CYS.
- For Bimodules, boundaries were considered from one residue before the first CYS of Module 1 to one residue after the last CYS of Module 2.
- All linker lengths for solved structures $=4$ residues, except in the cases of CR2~1,2 (where linker length $=8$ residues), DAF~1,2 and FH~19,20 (where linker length $=3$ residues).
- For CR2~1,2, four residues after the last CYS of Module 1 and four residues before the first CYS of Module 2 were taken as boundaries for individual modules.
- For DAF~1,2 and FH~19,20, two residues after the last CYS of Module 1 and one residue before the first CYS of Module 2 were taken as boundaries for individual modules.
- For structures solved by X-ray diffraction (${ }^{\wedge}$), the best resolved structure was used or in cases where unliganded and structures in complex available, the unliganded form was used for surface area calculation
- In the case of structures solved by NMR (*), the closest to mean, average minimised structure or the lowest energy structure was used as appropriate.
- X-ray structures were protonated before calculations.

Reference: D. C. Soares, P. N. Barlow, Complement control protein modules in the regulators of complement activation; in Structural Biology of the Complement System. D. Morikis, J. D. Lambris, Eds. (CRC Press, Taylor \& Francis Group, Boca Raton, 2005) pp. 19-62.

